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THE METHOD OF BOUNDARY EQUATIONS OF THE H~ERSTE~N-TYPE 
FOR CONTACT PROB~MS OF THE THEORY OF ELASTICfTY 

WHEN THE REGIONS OF CONTACT ARE NOT KNOWN* 

B.A. GALANOV 

Novel formulations are given for the classical and non-classical, three- 
dimensional contact problems. The inequality-type constraints donotappear 
in the formulations as they do in the method of varational inequalities 
/l--8/ and in existing formulations of the contact problems /9- 13/. The 
complete system of equations of a contact problem consists of one boundary, 
equation of the Hammerstein-type and the usual equations of equilibrium 
for the compressive force and moments acting on the bodies. If the mutual 
rotations of the bodies and their closeness are known, the solution of 
the boundary Hammerstein-type equation readily yields the contact pressure 
and region of contact. 

By formulating the problem in this manner and using modern methods 
of the theory of operator equations we can investigate the existence and 
uniqueness of the solutions and some of their properties in very general 
cases (e.g. those of the multiconnectivity of the regions of contact 
soughti. Moreover, the possibility arises of solving the problem using 
existing methods of solving Hammerstein-type equations /14-17/. TdO 
types of problems, one of them classical, are used to study the correctness 
of the formulation of the contact problem. 

1. The classical contact problem. Let us consider the case when -,he contact problem 
can be reduced to determining, in the half-space Z>O, the harmonic function u (.lf) = rI ("5% 

y, z)(ll(~) = o(+) as f- sir, r = $',r2 A- ii2 + z')‘, and a plane closed region SC E, = {z = 0) 
from the conditions 

2abu (M) = g (31): u,' (Al) > 0, .lil e s (1.1) 
2niru (AI) > g (M); u,' (.V) = 0. .W E (E? \ S) 
(g (Al) E C (I&), i, = const > 0) 

We assume that a bounded region R, = {.n/r: g(.fif)>O}, g(.tf) <O with .%I E 0, exists ithe 

region R, can be multiply connected). 
Such a formulation 0 f the problem corresponds to frictionless imbedding of a stamp ir. an 

elastic half-space /g---13/, provided that the settlement of the stamp and its rotation are 
both known, i.e. that the function g(M) = h, -!- h$ -'r 12,~ - ! (5, y) is known. The function. 

f(z, u) determines the geometry of the stamp. 
If we introduce the potential of the simple layer of density p(.II), .%f~ S, then we have 

for 2 = 0 

Lf (Jr) = -& , ~~(-~~,~)~(.~)a~~~: S(M,IV)= 
s 

[(.? - E)2 -+ (II-- ??)'I-"? M(G Y)> N(E3 q) 

and problem (1.1) becomes equivalent to the probiem of determining the Contact pressure p(.\f), 
and the regions of contact S from the system 

where 9 is an arbitrarily bounded. region containing the closure Q,. Clearly, s E h 
Let US introduce the positively homogeneous bounded operators Q and Q-, placing inO'the 

functions v(M),ME 52 in correspondence with the functions v+ (M) and v- (M), M 6% 9, 

according to the rules 
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u+(M) = Q (VW)) = SUP {a (MI, 0) 
d (M) = Q (u(M)) = inf {v (M), 0); u (M) = u+ (M) + d (M) 

Let us investigate, for the unknown function u(M), the non-linear equation 
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(1.3) 

which we shall write for convenience in the operator form as 

@-n + LKQv = g (1.4) 

The parameter p> 0 can take any value. The dependence of the solution of Eq.Cl.4) on 

P will be shown later (Theorem 5 and its corollary). 
Elementary transformations reduce Eq.(1.4) to a Hammerstein-type equation and can be 

written in the following equivalent forms: 

v = p-'g + BQv, w = BFw 

(B = E - ?+PK, 1~’ = pu - g, Fw = Q (to + ‘g)) 

where B is a linear operator and E is an identity operator. 

Theorem 1. If V* is a solution of Eq. (1.41, then (p = Q#, 

of system (1.21 and S#@ when &,# @; 
S D {,1f:~f>O}) is a solution 

conversely, if (p, S) is a solution of system (1.21, 
then the function 

v* = I"-"g f p - hp-'Kp, M c B (1.5) 

is a solution of (1.4). The region S can be multiply connected. 

Proof. First we shall show that S# @ if &,# 2. Let us assume the opposite. Then 
(1.4) implies the inequality g<O which contradicts the existence of !&#a. 

Let c* be a solution of (1.4). When MES, (1.31, (1.4) imply the relations p = Qu* > 
0, hKp = g. If Ale S, then v* (0, r_~Qv * + kKQu* =g and hKp> g andthisproves the right-hand 
side of the theorem. 

Now let (p,S) be a solution of system (1.2). When ,VE S, the equality V* = p follows 
from (1.2), (1.5). If hfs(O\ S), then we have v* = p--'g - ?+I-‘Kp<O and we can write 
(1.5) as: 

U* = p-'g + Qv" - 3+-'KQv*, die B 

i.e. u* is a solution of (1.4). 
Hence, to solve the contact problem (1.2), it is sufficient to find the solution v* of 

Eq.Cl.4)) since p = Qv* and S = {W: v* > U).Therefore from now on we shall concern ourselves 
with Eq.Cl.4). 

In addition to (1.4) we shall consider, in L?(a), a regularized boundary condition 

EQC -j- ~QL> + hKQu = g (1.6) 
with parameter a>O. We will write Eq. (1.6) in the form 

Y = p-'g f B,Qv (8, = (1 - E/P) E - hp-‘K) (1.7) 

and study it for such fairly large values of 1' 
inequality holds: 

that when E E (0. ~~1. f0 = const> 0, the following 

Here hk>O are the characteristic values of the operator K (the norm of the operator 
is defined in /17/, p.191). 

Then (by virtue of the principle of compressed mappings applied to (1.7)) Eq.cl.6) has 
a solution u,EL?(R) for all EE (0, ~~1. 
GE 6z c (n). 

Since the kernel K(.IJ, N) has a weak singularity, 

Let us introduce the notation 

t&+ = @llf : DE > 01, @- = {AJ : c; < 0}, (a, b) = a {f) 6 (t)dt 

The differential properties 0 
lemma. 

f the solutions t+ of (1.6) are established by the following 
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where the prime denotes a derivative with respect to for y, and its meaning is determined 
below. 

From the theorem on differentiation of integrals with a weak singularity /lS/ it follows 

that the second term on the right-hand side of (1.9) is a function belonging to L,(R). Therefore, 
integrating this term by parts and taking into account the finiteness of L'~+, and the equations 

K,’ (M,.v) = -R,' (M,.2'), h’,’ (M, iv)= --K,’ (M, A’), we obtain 

EL.; + Aliu,' = g', M, J'G E Q,+ (l.l!'j 

From this it follows that the function L;+, MER,+ belongs to the same class of functions 
as g’ (M), Y E Qe+. 

In the same way as for (1.8), (l.lO), we have 

PUr + hKr,+ = g, PU; + ~KG~+' = g' (l.'ll, 
Al E R,- 

The first part of the lemma follows directly from (l.l~), (1.11). The same equations 
imply that c~+' E C (Q,+) and L.~-' E C (R,-) when g' E c (SZ) (in general case C; SC (njj. 

The theorems which follow establish the conditions of existence (Theorem 2; and uniqueness 

(Theorem 3) of the solution v* of (1.41, the continuous dependence of c* on the vector 
parameter IL = (h,,h,,h,) (Theorem 4) and some properties of u * (Theorem 5 and its corollary! 

Theorem 2. The necessary and sufficient condition for the solution v* E L,(R) of (1.4) 

to exist is, that 
II v,llr, < c. E E (0. E"1 (1.1') 

where the constant c is independent of e. 

Proof. Necessity. Let v* E L,(O) be a solution of (1.4) and S = {M : v* > 0). Let us 
denote by &O(Q) the set of functions finite in R and belonging to L,(R), and consider the 

following functional on the convex set w = {VE L,"(Q), v> 0) closed in L, : 

T (v) = 1 J (Ku. v) - (g, v) 

The functional is trictly convex and r#‘ (v) = grad v(v) = hKv - g. We will show that 

inf cp (c) = q (L.*+) 
BE" 

To do this, it is sufficient to confirm the inequality /19/ 

(cp' (v*+), L: - v*+) > 0, vu E 0 

(1.13) 

Or 

(hKv *+ - g, v) 2 (I-Ku*+ - g. v*+). Vu E w (1.14) 

Since ~KL++ -g> 0, v*+ = 0 when .%fs S and hKv*+ -g = 0, u*+ > 0 when ‘13~ S, it 

follows thatthe right-hand side of i1.14! is equal to zero and the left-hand side is positive, 

and this proves (1.13). 

We can show, in the same manner, that the unique function L:~+ = Qve furnishes a minimum 

to the functional qr (D) = 1 ?F (c, u) A cp (u), u E 0. Since for any E E (0, sO] we have 

(re(vE+)< I&E(LI*+,++)~ ';'J (Ku*+, v*+)-(g, v*+) 

or 
‘i*E [(V*+, V*+) - (vei, %‘)I > ‘F (GA) - CF (u*+) > 0 

it follows that 

i/ L.E+ /I4 < Ii v** Jim,, Vt EE (0, &I] (1.15) 

The existence of the constant c in inequality (1.12) obviously follows from inequality 

(1.15). 

Sufficiency. Let the inequality (1.12) hold. We will write Ac = pQ-v + hKQv - g and 

form a sequence ve, (n = 0, 1,2.. ..) where G> 0 and ~-0 as n-+ m. We separate out of 

the sequences {v,~), {Qv~,}, {Q-ve,) weakly convergent in L,, thesubsequences (we can always do it 

by virtue of (1.12) and the reflexivity of the space L, (see /20/, p.60)), and assign to them 

the same notation as that of the original sequences, i.e. ~,~-v*.Qv~,- ~u.Q-v.~ - U. We shall 

show that v" is a solution of (1.4). 

Since Q-ve, = p-'g - Ap-‘KQve n - e,,p-‘Qv?,, inequality (1.12) holds and K is a completely 

continuous operaror, it follows that Q-vek,-+ u /20/. Therefore 

(PUP,, v,,) --, (u, v*) (1.16) 

Using the monotonicity of Q, we can write (Q-t - QvEn, t - ve,)> 0 for any TV L,. Passing 

to the limit (taking (1.16) into account), we obtain 

(Q-t - II, t - v*)> 0, Vt E L, 
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i.e. Qv* = u (by virtue of the continuity of Q- and the Minti lemma /14/j. From this it 

follows (since Qv = v -Q-v) that Qv* = w. 
Passing to the limit in the relation 

Ave, = pQ-ve,, + E,QL.,, + ?LKQL~~, - g - enQvE, = - .q,Qve n 

as ve, - v*, we obtain Au* = 0, i.e. v* E L2 is a solution of (1.4). This proves the theorem. 

Note 1. If UC,,= WP"'@), P> 1, and II%,,l/nt,(')<C (the constant c is independnet of e,), we 
can separate from the sequence ur (on the strength of the Sobolev inclusion theorems /17, la/) 

n 
the subsequences converging strongly to 19 in the spaces into which W,") can be compactly 

inbedded. For example, when p>Z, the sequence will converge uniformly to 9. The conditions 
of inclusion L'~E w,(*)(n) are given in the previous lemma. 

Note 2. The following estimate follows direclty from (1.6): 

;I ueL IIL, d m-l II g I/c, m= inf K(M,N)>O 
QXQ 

therefore 

Theorem 3. If Eq.Cl.4) has a solution V* E L,(R), it is unique. 

Proof. Let 

d-v, + LKQv, = g, d-v, + AKQv, = g; VI it us 

We write 

d = Qvz - Qv,, d- = Q-v2 - Qvl, 6 = up - ul 

Then from (1.17) we have 

(1.17) 

(1.18) 

$- + 1Kd = 0 (1.19) 

p (d-9 d) + h (Kd, d) = 0; p6 - pd + hKd = 0 

(d-3 d) = - (Q-u,, QUA - (Qu,, QvJ > 0 

Therefore (1.19) and the strict positiveness of K together imply d = O,fj = 0. The 
theorem is proved. 

Theorem 4. Let h be a real parameter, 
solutions of (1.4) depending on h. 

and g(V) = h -f (-II), L',,*, h E IO, hoI a family of 
Then L.~* depends continuously on h and the continuous 

function 
1 

P (h) = \ Q (L’,,* (Jf)) d>SM 
h 

is strictly increasing (P(h) is the force impressing the stamp to the depth h). 

Proof. Let V, and a, 
from the interval IO,h,]. 

be solutions of (1.4) corresponding to the values h = h, and h = h, 
Then, taking into account the notation (1.18) we have 

pd- + hKd = h, - h,, p6 - pd + hKd = h, - h, 

p (d-3 d) + h (Kd, d) = (h2 - h,, d); (d-, d) > 0 

(1.20) 

Since (h, - h,, d) = (h, - h,) (P (h,) - P (h,)) and the left-hand side of the last equation of 
(1.201 is positive, it follows that P(h) is a strictly increasing function. Further, from 
the last equation of (1.20) and the strict positiveness of K it follows that d-0 as h,-+h,. 
Therefore the penultimate equation of (1.20) shows that 6-O as hl-hl, which implies the 
continuous dependence of uh* on h. The theorem is proved. 

Note 3. We can show in the same manner the ocntinuous dependence of v,,* on the vector 
parameter h= (h,,h,,h,) (E(M)= hi-t hp~+h~p-f((~,g)). Such a continuous dependence is of essential 
importance when the value h= (h,,h,,h,) in the contact problem is determined from the condition 

i Q bh* (4) ds,,, = P, ( YQ k,,* Of)) ds,, = .‘fr, ZQ b,,* W) dS,,== M, 
0 6 

where V', JfX, M,) are given values (P is the force pressing down the stamp, and M,, M, are the 
moments acting in the stamp). 

Theorem 5. Let v1 and v) be solutions of (1.4) corresponding to the values 
P = Pz* I*l# Pz. Then Qv, = Qvp. 

P=PX and 

Proof. We shall assume, to be specific, that Ap = pz - pl>O. We have 

P,Qv, + MQu, = g, p*Qv, + hKQu2 = g (1.21) 
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Let us subtract the first equation of (1.21) from the second, and scalarly multiply the 

result by d. We obtain 

Ap (02, 4 + ~1 (d-3 d) + 1 (Kd, d) = 0 (1.2') 

We can confirm direclty that the termson the left-hand side of (1.22) are non-negative 

numbers. Therefore d = 0, from which the assertion of the theorem follows. 

Corollary. The existence of a solution of (1.4) for some value of p = p* implies the 

existence of solutions of (1.4) for all p>O. 

Note 4. We can deal in the same manner with equations of the type (1.4) in the case of 

non-symmetric kernels K(M,,V) (e.g. for the problems discussed in /21/ and in contact problems 
with frictional forces). 

Thus the contact problem formulated can be recuced to solving Eq.(1.4), and various 

approximate methods /14--171 can be used to achieve it. An appropriate method based on the 
application of a regularized boundary equation was discussed in /22/. 

2. A contact problem for bodies with linear and non-linear, Winkler-type 
covering /g-11/. In these problems the first condition of (1.1) has the form 

0 (u,' (.V)) f 3XhU (JI) = g (.U) 

Here (D(t) (-x < t < ~13) is a strictly increasing, continuous function of its arguement 

t, 0 (0) = 0. 
A system analogous to system il.21 is written for the unknown pair (u. (.\I). S) thus 

where li is a function inverse to a. u'(.lI) = a) (/I (dl)). As before, IJ (.V) is the contact pressure 

and S is the area of contact. In what follows, we shall assume that the function H satisfies 

the condition 

I H (w) I < c* I ii' j1 2; c.+ = conyt, 0 < ^ < 1 

Let us consider the Hammerstein-type equation for the unknown function 1; (.lI) 

which has the following operator form: 

1' -~ i.KQNr ,c (2.Z) 

If L.* is a solution of ;2.?!, then the function U' = Qu* and the set 5' mm (.)I: L:* :-O} is 

a solution of system (2.1) and s # z when !lO# 8. The converse it also true. If (u.. S) is 

a sclution of (2.1), then the function L.* = R - hh'EJv (11= !!) is a solution of (2.2! . The 

proof is analogous tc that of Theorem 1. 

Thus problem (2.1! is reduced to that of solving the Hammerstein Eq.i2.2). The uniqueness 

of the solution of* of (2.2) and its continuous dependence on the parameter h = (h,, h?. li,) is 

established in the same manner as in Theorems 3 and 4. The sufficient conditions for a solution 

of (2.2) to exist are given in Theorem 6, where the constraints imposed on the function 4 are 

somewhat weakened (the assumption that the bounded region 51, = {.!I: g> 0) exists is retained). 

Theorem 6. Let the following conditions hold: 

R 5 L,(O), p = 1 + 1'3. Ii2 < CL < 1 

Then Eq. (2.2: has a solution L.* -5 L, (c?). Moreover, if p C C (9), then L.* E C ('-?). 

Proof. The operator K is a compietely continuous operator from L,.q = 1 - g(. into &* = 

L ,.p=1+1tL /18/. The contraction of K on L, is a selfconjugate, strictly positive operator. 

Therefore a square root D = Ii'* exists, which is a completely continuous operator from LL 

into Lq* ,'14/. The conjugate operator D* acts from Lq* into L,. 

If we m&e the changeof variable :'14j L' = Dt i_ g in (2.21, we obtain the equivalent 

equation 
F‘tGtI kD*QH (Dt - g) = 0; t 7 L2 (2.3) 

with a continuous, monotonic and potentia- 1 operator F (the monotonicity of F follows from tie 

monotonicity of the function QH id). 
Let us find a lower estimate for the scalar product (Ft. t) 

(Fr. t) = (t. t) + i. (QH (Dt ‘- p). Dt - p) - 
1, (QH (Dt + g), g) 2 (t. t) - ii (QH (Dt - g), g ) > 
Ct. 0 - ). II glhp II QH (Dt - g) Iiiq 



639 

Using the properties of the operators Q and H and the Minkowski inequality, we obtain 

II QH W + cd 11~~ < c* (II D II II t Ilt, + II g IILJ"~ 

Therefore, we have the following estimate: 

and a number p >0 exists when a>'/, such, that when 11 t&, > p, the inequality (F&t)> 0 

holds, i.e. according to the Brauder-Minti theorem /14/ Eq.(2.3) has a solution 
(2.2) has the corresponding solution 19' = Dt* + g. 

We shall show now that u* ?Z C(Q) when gE C(Q). Let M ES = {M: v* > 0) 
of S# 0 is shown in exactly the same manner as in Theorem 1). Then we have, 

v+ (:Cr) -+- h 5 K (X, N) H (v* (N)) dSN = g (3-I) 

and the followinq alternative is possible: 1) c* (X) (Ilfr S) is a discontinuous 

and 2) c.* (.V)(,IIE S) is an unbounded function. 

t* F -Lz and 

(the existence 
for ME S, 

(2.4) 

bounded function, 

Fig.1 Fig.2 

In the first case the left-hand side of (2.4) is a discontinuous bounded function (since 
LliH@ is a continuous function), and this contradicts the continuity of g. In the second 
case the left-hand side of (2.4) is an unbounded function (since it is a sum of non-negative 
functions of which at least one is unbounded). This again contradicts the continuity of g. 
Therefore L'* (Al) (.V E S) is a continuous function. This, and the properties of the potential 
of a simple layer imply that the function L** = g - XKQHc* (31 E n) is continuous, and this 
proves Theorem 6. 

Note 5. If g=C(P), then the operator U, completely continuous in C(Q) defined by the 
relation UV= g-AKQIIc, maps the segment iVg.g]cC@) onto itself (the constraint IH(w ~~1 
w jl ‘a can be omitted here). Therefore the Schauder principle /17/ implies at once that Eq. 
(2.2) has a solution z* ~IUg,gl for all %>(I. 

Note 6. When p=e, Eq.(1.6) is of the type (2.2). 
The method discussed here of studying contact problems using boundary, Hammerstein-type 

equations, is fairly general. In many contact problems (e.g. in problems dealing with contact 
between plates and beams with an elastic foundation, and in problems of contact between rough 
bodies), the conditions of contact between the bodies for which Green's function is known 
i.e. the response of each body to a unit excitation), can be reduced with help of the operator 
Q to a Hammerstein-type equation. 

Numerical example. Eq. (1.2) was solved with H= E using the method of successive 
approximations 

%,l = g - XKQc,; 10 = g: n = 0,1,2, . . . 
for the following data: 

g (JO = Ii -I (z-y) 

(2.5) 

which correspond to the problem of imbedding a stamp with Winkler-type covering, to a depth h 
into an elastic half-space. The stamp consists of "paired" paraboloids of rotation whose 
apices are separated by a distance %z(Q)o). 

Eq.(2.5) was discretized, remembering that the solution i.* is symmetric about the = and 
y axes. The nodes of the mesh approximating the rectangle R, have the following coordinates: 
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I = 4. 1, = j$; 0 I = u, 51, x2. . . +-,?I 

Here h, = 1,5/m, li, = 1.01'm are the mesh steps in the z and ydirection, respectively. The 
operator K was approximated as in /22/ using the rectangle formulas. Process (2.5) was terminated 

according to the criterion 1, L‘~~-,~ - I‘, I;/ // L’~ 11 _i E, c: = IO-~. 
Fig.1 shows the isobars p (M).105 = c = coast for the following values of the parameters: 

L = 0.0;; R = 103; (I = U.5; m = 10. The solid lines 0,1,2,3 have the corresponding values r = (I; .?.4(,: 
i,9t;; lU.64 and h= 1.X5.10-' (the region S of contact is doubly connected and the force pressin? 
down the stamp is P = i,9.10+). The dashed lines 4,5,6,i have the corresponding values r=- 0: 
lti,5; Zfi,i; 28,9 and A = 3.;j.l(,-' (the area S of contact is singly connected, P= 3,i.l(l-4!. 

Fig.2 shows the function P = P(h). The point @,,I',) corresponds to the passage from the 
doubly connected region of contact to the singly connected one. 

The author thanks S.A. Kravchenko for carrying out the computations. 
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